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Abstract. The development of robust design strategies coupled with detailed sim-
ulation models requires the introduction of advanced algorithms and computing
resource management tools. On the algorithmic side, we explore the use of simplex-
based stochastic collocation methods to characterize uncertainties, and multi-objective
genetic algorithms to optimize a large-scale, three-dimensional geometry using a very
large number (extreme ensemble) of CFD simulations on HPC clusters. The problem
of interest is the optimization under uncertainty of a Formula 1 tire brake intake to
maximize cooling efficiency and minimize aerodynamic resistance. The uncertain-
ties are introduced in terms of the tire deformation and free stream conditions. A
simulations environment – Leland – has been developed to dynamically schedule,
monitor and stir the calculation ensemble and extract runtime information as well
as simulation results and statistics. Leland is equipped with an auto-tuning strat-
egy for optimal load balancing and fault tolerance checks to avoid failures in the
ensemble.
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1 INTRODUCTION

In the last few years, clusters with 10,000 CPUs have become available, and it
is now feasible to design and optimize complex engineering systems using compu-
tationally intensive simulations. This development highlights the need to create
resource managers that deliver cost-effective utilization with fault tolerance.

The BlueGene/L cluster with 65,536 nodes was designed to have less than one
failure every ten days. In fact, this cluster and others like it experience an aver-
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age of one processor failure every hour1. In light of this, it is necessary to study,
develop, and continually improve strategies for efficient completion of large simu-
lations. Theoretical work has been published in the literature that suggests that
advanced algorithms might be available although they have only been demonstrated
using test functions on a small number of compute nodes2.

The design process involves running an extreme number of large computations or
‘extreme ensemble’ (on the order of thousands) in order to create a robust solution
that will remain optimal under conditions that cannot be controlled (‘uncertain-
ties’). We call this process optimization under uncertainty. The ensemble is a list of
runs generated by the optimization and uncertainty analysis algorithms that is dy-
namic in nature and is not deterministic. This means that the number of additional
simulations is dependent on the results of the prior converged simulations.

In this paper we explore the computational design of a Formula 1 tire and brake
assembly using large-scale, three-dimensional Reynolds-Averaged Navier-Stokes sim-
ulations on a high performance computing cluster. The purpose of designing the
brake duct is to increase the amount of air captured by the duct while minimizing
the total drag of the tire. This multi-objective optimization problem is tacked using
a genetic algorithm which produces a Pareto front of best solutions. In addition,
uncertainty analysis of 4 specific points on the Pareto front (minimum drag, maxi-
mum cooling, best operating point or trade-off, and baseline F1 tire geometry) are
shown in the results section of this paper. Future work will include a study show-
ing how uncertainties can be invasively incorporated in the optimization procedure,
producing a probabilistic Pareto front rather than analyzing the sensitivity of the
deterministic Pareto due to uncertainties. For such a study, there are approximately
400 simulations to perform per optimization cycle (i.e. generation). When the re-
sults of those 400 simulations are analyzed, an additional list of 400 simulations,
each with a unique range of input parameters, are generated for the next generation
in the optimization process. The values of the the input parameters for the next
generation are not known a priori. The optimization procedure needs to account
for uncertainties arising from variable inflow conditions as well as variability in the
flexible tire geometry. This complex baseline geometry consists of 30 million mesh
cells. In order to generate an optimal design under uncertainty the mesh is deformed
locally, creating 5000 unique simulations to perform. Each simulation (or realiza-
tion) will be run on our in-house cluster using 2400 cores; the full design process
should take approximately 2 weeks to complete.

The second contribution of this paper is the development of a software platform
able to reduce the total time needed to carry out an engineering design process such
as the one described above. We have developed a simulations environment, hereafter
referred to as Leland, that allows us to schedule the resources and to monitor the
calculation ensemble and extract runtime information as well as simulations results
and statistics on the fly. Leland is equipped with an auto-tuning strategy for select-
ing an optimal processor count. Moreover a fault tolerance strategy is implemented
to ensure that a simulation or a processor stall is detected and does not impact the
overall ensemble finish time. The results of this study show the actual computational
time savings with efficient use of resources using Leland as opposed to submitting
individual jobs on the cluster one at a time using traditional queue managers (e.g.
Torque, SLURM, etc.).
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2 ROBUST DESIGN ALGORITHM

The impact of uncertainties in the robust design process are characterized using
the Simplex Stochastic Collocation (SSC) algorithm3,4, which combines the effec-
tiveness of random sampling in higher dimensions (multiple uncertainties) with the
accuracy of polynomial interpolation. This approach is characterized by a super-
linear convergence behavior, thus outperforming classical Monte Carlo sampling,
although retaining its robustness. In the SSC methods, a discretization of the space
spanned by the uncertain parameters is employed and the simplex elements obtained
from a Delaunay triangulation of sampling points is constructed. The robustness
of the approximation is guaranteed by using a limiter approach for the local poly-
nomial degree based on the extension of the Local Extremum Diminishing (LED)
concept to probability space. The discretization is adaptively refined by calculat-
ing a refinement measure based on a local error estimate in each of the simplex
elements. A new sampling point is then added randomly in the simplex with the
highest measure and the Delaunay triangulation is updated. The implementation of
advanced algorithms to improve the scalability of Delaunay triangulation in higher
dimensions, in order to circumvent the curse of dimensionality, has not been fully
investigated as part of this study. There are proofs in the literature that show that
Delaunay triangulation can achieve linear scaling with higher dimensions5.

In this work we analyze a nontrivial multi-objective problem in which it is not
possible to find a unique solution that simultaneously optimizes each objective: when
attempting to improve an objective further, other objectives suffer as a result. A
tentative solution is called non-dominated, Pareto optimal, or Pareto efficient if an
improvement in one objective requires a degradation of another. We use the NSGA-
II algorithm6,7 to obtain the non-dominated solutions, therefore we analyze the more
interesting solutions on the deterministic Pareto set in presence of uncertainty. This
is done in order to prove the importance of taking in account the variability of several
input conditions in the design process. For all these solutions the SSC is used to
obtain a reconstruction of the objective function statistical moments, refining the
simplexes until an accuracy threshold is reached.

3 DYNAMIC RESOURCE MANAGER - LELAND

The structure of Leland is based on a workflow through I/O sub-systems that
represent the software applications (i.e. Sculptor, Fluent, Tecplot, Matlab etc.)
involved in the process. This environment is designed to run natively on any high-
performance computing (HPC) system, by integrating with the job-submission/
queuing system (e.g. Torque). Moreover, it does not require continuous manage-
ment: once the analysis is initiated multiple simulations are submitted and mon-
itored automatically. In Leland, a job is an instance of the entire multi-physics
simulations, which might include grid generation, mesh morphing, flow solution and
post-processing. The main objective of Leland is to set-up a candidate design as a
job and to manage it until it is completed and to gather relevant results that are
used to inform the optimization under uncertainty process. ROpt (robust optimum),
shown in Figure 1a, is the engine behind this design environment. Given the design
and/or uncertain input variables, ROpt continuously generates new design propos-
als (samples) based on the evolutionary strategy and/or analysis of the uncertainty
space, until a convergence criterion is met.
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Figure 1: Leland flowchart

The Job Liaison, shown in Figure 1b, defines the characteristics of each single
job and continuously monitors the progress of the simulations until completion in
order to communicate the objective evaluations back to ROpt. It is the job of this
module to continuously monitor for faults, stalls, or errors to ensure that the total
runtime is not detrimentally affected by processor/memory failure.

The Job Submission engine, shown in Figure 1c, ensures that the correct number
of jobs is always running on the cluster. The variables (number of cores, number
of jobs, etc.) from the input file that are used to initialize the runs are dynamic,
meaning they can be edited on the fly and the system will respond accordingly.

Leland has the ability to dynamically select the optimal number of processors to
run per realization. This is achieved by auto-tuning. The user selects an optimal
window of cores to use per realization prior to launching the full ensemble. The
auto-tuning algorithm then samples the space by using a unique number of cores
per realization in the ensemble. Once two or more realizations are complete the
auto-tuning algorithm can start to construct an application specific speed-up curve
(Figure 2). Speed-up is defined as the total time required to finish the simulation
using 1 processor divided by the total time required to finish the simulation using p
processors (see Equation 2).

ttotal = tserial + tparallel + tcomm (1a)

= 5000 +
5× 106

p
+ 40p (1b)

Speedup(p) =
ttotal(1)

ttotal(p)
(2)

Efficiency(p) =
Speedup(p)

p
(3)

The speed-up curve in Figure 2 was generated by artificially replicating an HPC
simulation. The time required to complete an HPC simulation is primarily a function
of three factors i) portion of the code that is not parallelizable (tserial in Equation
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Figure 2: Sample HPC simulation diagnostics

1) ii) portion of the code that is parallelizable (tparallel in Equation 1) and iii) the
communication time between CPUs (tcomm in Equation 1). The serial portion of
code in the example shown in Figure 2 is constant (5000 seconds) and not a function
of the number of processors allocated to the job. The length of time required to
complete the parallel portion of code in the example shown in the same figure is 5
million seconds divided by the number of processors used. Finally, there will always
be some latency between CPUs and this is characterized by the communication time
between nodes. The linear penalization we used in this example is 40 seconds per
processor, but the latency slowdown could also be a more complex function related
to the specific application.

Linear speed-up, also referred to as ideal speed-up, is shown as the green dotted
line in the middle plot of Figure 2. An algorithm has linear speed-up if the time
required to finish the simulation halves when the number of processors is doubled. It
is common for fluid dynamic simulations to experience speed-down; this occurs when
the total time required to finish the simulation actually increases with increasing
processors. Leland has the ability to recognize the point at which speed-down occurs
(at about 400 processors in Figure 2) and never use more than this number of
processors. The rightmost plot in Figure 2 shows the efficiency (defined by Equation
3) curve for this artificial HPC simulation. The efficiency typically ranges between
values of 0 ∼ 1 estimating how well utilized the processors are compared to the
effort wasted in synchronization and communication. It is clear from this plot that
the highest efficiency occurs with the lowest number of processors.

This speed-up curve will guide Leland’s auto-tuning algorithm in assigning the
optimal number of cores per realization (which may not be in the users original
window). Since an ensemble of this size takes more than a few weeks on a large
cluster, multiple job submissions need to be submitted to the local queuing system.
These jobs are typically limited to 24 hour run times (or a wall clock time of 24
hours). Thus, it is essential that the auto-tuning algorithm recognizes how many
hours remain prior to the job terminating due to the wall clock time and tries to
increase the number of cores to finish as many realizations as possible within a
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(a) Outer view of tire (b) Inner view of tire

Figure 3: Front right tire of the Formula 1 race car used in this study showing green airfoil strut
used to secure tire to the experimental wind tunnel facility and the outer brake duct (magenta)
used to cool the brake assembly

specific time frame.

4 APPLICATION DESCRIPTION

Leland is used to optimize the shape of a F1 tire brake duct (magenta color in
Figure 3(b)), taking into account the geometrical uncertainties associated with the
rotating rubber tire and uncertain inflow conditions.

The objectives are to minimize the tire drag [N] while maximizing the captured
mass flow (kg/s) needed to cool the brake assembly. A computational mesh consist-
ing of 30 million elements is considered for a fully detailed 3D wheel model (Figure
4). The simulations that require geometrical modification (either for optimization
or uncertainty) are created using Sculptor, a commercial mesh deforming software
from Optimal Solutions8. The software is used to generate multiple CFD mesh
model variants, while keeping CAD and grid generators out of the design process
loop, thus saving design time and costs substantially. The generated models are
then used to compute the airflow around the tire geometry by a parallel CFD solver
(Fluent v12.1.4). It is important to closely monitor the skewness of elements in
Sculptor to ensure grid quality. If the deformation in Sculptor is too large, the CFD
solver will diverge. The boundary conditions, computational setup, and experimen-
tal comparison for this case are outlined in separate studies9,10,11,12.

4.1 Optimization Variables

A local mesh morphing software, Sculptor (v2.3.2), was used to deform the base-
line Formula 1 brake duct (Figure 3). Specific control volumes were used to deform
the brake duct in three dimensions, namely i) width of opening (Figure 5(a)) ii)
height of opening (Figure 5(b)) and iii) protrusion length (Figure 5(c)). Each de-
sign variable was allowed to change by ± 1cm as shown in Figure 5.

4.2 Uncertain Variables

Multiple uncertain variables were tested to determine their sensitivity to output
quantities of interest using a DOE (design of experiments) approach. Some of the
uncertain variables were based on the inflow conditions (i.e. yaw angle, turbulent
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(a) Isometric view of ground plane
showing contact patch

(b) Streamwise cut plane showing mesh
inside rotor passages

(c) Spanwise cut plane showing full
brake assembly

(d) Top view of plane cutting through
the center of the tire

Figure 4: Four different views showing the Formula 1 tire mesh

(a) Brake duct width (b) Brake duct height (c) Brake duct length

Figure 5: Brake duct optimization variables
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(a) Contact patch width (b) Contact patch height (c) Contact patch streamwise
location

(d) Contact patch spanwise
location

(e) Contact patch yaw angle (f) Tire bulge radius

(g) Contact patch platform
height

(h) Tire compression (i) Tire yaw angle

Figure 6: Subset of uncertain variables tested for sensitivity in output quantities of interest

intensity, turbulent length scale) while others were based on geometric characteristics
of the tire (i.e. contact patch details, tire bulge radius, camber angle). Figure 6
shows 9 geometric modifications that were performed. Each subfigure shows the
minimum, baseline F1 tire geometry, and maximum deformation for each uncertain
variable.

From the results of purely a one-dimensional perturbation analysis the turbulence
length scale (on the order of 0m ∼ 2m) results in less than a 0.1% difference in both
the mass flow rate through the brake duct and overall drag on the tire. Conversely,
both the mass flow rate and tire drag are very sensitive to the turbulence intensity.
The mass flow rate decreased by 7.8% compared to the baseline (less cooling) with
40% turbulence intensity, and the tire drag increased by 7.2% with 40% turbulence
intensity. This analysis confirms that the car performance decreases with ‘dirty’
air compared to ‘clean’ air. The sensitivity of the output quantities of interest
caused by the tire yaw angle is shown in the first row of Table 1. The remaining
rows in Table 1 show the sensitivity of mass flow rate and drag force to geometric
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Table 1: Mass flow rate into the brake duct and drag force on the tire sensitivity for 9 uncertain
variables and 3 design variables

Deformation

Mass
Flow
Rate
Change

Drag
Force
Change

Tire Yaw Angle [◦]
-10 1.93% -1.03%
10 -4.48% 6.12%

Contact Patch Width [cm]

-2 -0.65% 3.65%
-1 -0.34% 1.87%
1 0.39% -2.10%
1.5 0.72% -4.24%

Contact Patch Height [cm]

-3 -0.28% -1.79%
-2 -0.21% -1.11%
-1 -0.12% -0.47%
0.5 0.08% 0.18%

Contact Patch Streamwise Location [cm]
-3 0.78% -4.73%
-2 0.40% -1.92%
1 -0.13% 0.57%

Contact Patch Spanwise Location [cm]
-2 0.22% -1.34%
-1 0.04% -0.20%
1 0.12% -0.41%

Contact Patch Yaw Angle [◦]

-15 0.66% -6.08%
-10 0.31% -2.50%
10 -0.02% 0.02%
15 0.24% -1.99%

Tire Bulge Radius [cm]
-2 0.08% 0.38%
-1.5 0.06% 0.39%
1 0.01% -0.51%

Contact Patch Platform Height [cm]

-0.15 0.49% -3.28%
-0.13 0.46% -3.12%
-0.11 0.41% -2.72%
-0.09 0.35% -2.44%
-0.07 0.29% -1.90%
-0.05 0.22% -1.31%
-0.03 0.17% -0.98%
0.3 -0.21% 0.88%

Tire Compression [cm] -1 -2.06% -6.44%

Brake Duct Width [cm]
-1 4.14% 1.46%
1 -13.66% -0.43%

Brake Duct Height [cm]
-1 -5.32% 0.98%
1 3.33% 0.12%

Brake Duct Length [cm]
-1 -1.83% -0.11%
1 -2.85% 0.13%

characteristics, specifically contact patch, tire bulge radius, tire compression, and
brake duct dimensions.

In the end, the three most sensitive uncertain variables, namely the tire contact
patch width, tire yaw angle, and turbulence intensity were selected for the optimiza-
tion under uncertainty study. The tire contact patch width was able to expand and
contract up to 1cm, the tire yaw angle varied between ± 3◦, and the turbulence
intensity varied between 0% ∼ 5%.

5 RESULTS

Formula 1 engineers are interested in primarily three factors related to tire aero-
dynamics i) overall tire lift and drag ii) cooling performance of the brakes and iii)
how the tire airflow affects downstream components (wake characteristics). All three
factors are tightly coupled which makes design quite complicated, especially when
uncertainty in the flexible tire walls and upstream conditions can negatively effect
the car performance.
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Figure 7: Wake sensitivity (shown by streamwise x-velocity contours for a plane located 1.12 wheel
diameters downstream from the center of the tire) for a simplified tire with wheel fairings (top
left), baseline F1 tire (top right), baseline F1 tire with blocked hub passages (bottom left), and
simplified tire with artificial mass efflux from blue segment (bottom right)

Figure 7 shows the wake sensitivity caused by flow traveling through the tire hub
and exiting from the outboard side of the tire. If the flow of air is not allowed to pass
through the tire hub (the top left and bottom left images in Figure 7), there is no
mass efflux from the outboard side of the tire and the wake is quite symmetric about
the wheel centerline. The wake is dominated by a counter-rotating vortex pair and
both the inboard (left) and outboard (right) vortex are of similar size. Alternatively,
if the flow of air is allowed to pass through the tire hub the inboard (left) vortex
becomes larger than the outboard (right) vortex causing wake asymmetry (the top
right and bottom right images in Figure 7).

The results of the single parameter perturbations indicated previously show the
mass flow rate through the brake duct and tire drag force are more sensitive to the
brake duct width than the brake duct height or length (in the range of deformation
between ± 1cm). The physical explanation of this result becomes evident when
visualizing iso-contours of turbulent kinetic energy around the tire. Figure 7 shows
the difference between a low width configuration (top) and high width configuration
(bottom). The larger width of the brake duct causes a larger separation region
immediately behind the brake duct in addition to higher turbulence levels in the
shear layer immediately behind the inboard back edge of the tire.

The Pareto frontier showing the optimal brake duct designs under no uncertainty
are shown in Figure 9. Ten generations, which equates to 450 simulations, were
needed to eventually construct the Pareto frontier. Further details about the opti-
mization strategy can be found in Table 2. This table reports the settings of the
NSGA-II algorithm adopted to drive the main phases of the genetic algorithm: se-
lection (e.g. mating pool, parent sorting)6 and reproduction (e.g. crossover and
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Figure 8: Turbulent kinetic energy contours for the minimum drag configuration (top) and maxi-
mum cooling configuration (bottom)

mutation)6,7. Leland was used to handle the job scheduling and management and
as a result the time required to complete the 450 simulations was 2 days compared
to about 4 days without using Leland, which requires submitting jobs manually to
the job queuing system using a constant number of processors.

Table 2: Multi-objective optimization strategy

Parameter Value

Population size [-] 50
Crossover fraction [-] 0.90
Mutation fraction [-] 0.10
Parent sorting Tournament between couples
Mating Pool [%] 50
Crossover mode Simulated Binary Crossover (SBX)7

Generations [-] 10

Among the Pareto set (see Figure 9), the design that achieves the highest mass
flow rate is shown in blue and the design that achieves the lowest overall drag on the
tire is shown in magenta. The green design is labeled as the trade-off design since
this design tries to achieve the highest mass flow through the inlet of the brake duct
while minimizing the total drag on the tire. The baseline geometry, reported in red,
was shown not to be on the Pareto front in the deterministic setting.

In the previous results once the tire configuration and other input conditions
are specified, the solution is uniquely determined without vagueness. On the other
hand, when uncertainties are present, the results have to be expressed in a non-
deterministic fashion either probabilistically or as ranges of possible outcomes. The
approach we followed here using the SSC is strictly non-intrusive, in the sense that
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Figure 9: Deterministic Pareto front (left); the green, blue, magenta, and gray brake ducts in
the subfigure on the right correspond to the trade-off, max cooling, minimum drag, and baseline
configurations respectively

the existing tools are used without modifications, but the solution - or more pre-
cisely, their probability distributions - are constructed performing an ensemble of
deterministic analyses. Further details about the uncertainty quantification strategy
can be found in Table 3.

Table 3: Uncertainty quantification strategy

Parameter Value

UQ algorithm[-] SSC
Maximum number of SSC samples[-] 30
Convergence Threshold on refinement [-] 1e−3

Number of Monte Carlo samples [-] 1e3

Polynomial order of interpolation [-] automatic up to 6

The variability of the four geometries described above (namely trade-off, highest
mass flow, lowest drag, and baseline) as a result of the uncertainties in the the
tire yaw angle, turbulence intensity, and contact patch width are shown in Figure
10. The variability of the minimum drag design is highest shown by the spread
of magenta dots, followed by the maximum mass flow design shown by blue dots,
trade-off design shown by green dots and baseline design shown by red dots. The
colored dots in this figure represent the mean probabilistic values and the black lines
represent ± 1 standard deviation of the probabilistic distribution. It is evident in
this figure that the optimal designs, on average, move away from Pareto frontier,
decreasing the overall performance of the race car.

A similar conclusion can be drawn by looking at the probability density of the
drag force and the brake mass flow (Figure 11). The former shows a large excursion
of both the position of the peak and the support, while the latter is only marginally
affected. This directional sensitivity under uncertainty with respect to drag force
might suggest that only the drag minimization could be treated as a probabilistic
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Figure 10: Pareto frontier for F1 wheel assembly showing the variability of the minimum drag
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in the inflow conditions and flexible tire geometry.
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Figure 11: PDF’s of the output quantities of interest used for this study

objective, while the brake mass flow optimization can be handled using conventional
(deterministic) optimization. Since the solutions identified above move away from
the deterministic Pareto, the optimization process cannot be decoupled from the
uncertainty quantification process. We plan to tackle the joint problem in a future
study.

6 CONCLUSIONS

In this work we introduced an efficient method to perform massive ensemble cal-
culations with application to a complex Formula 1 tire assembly optimization case.
Special attention has been posed to the creation of an effective resource manager to
handle the large number of computations that are required. Since the geometrical
uncertainties associated with rubber tires and inflow uncertainties associated with
upstream ‘dirty’ air have been shown to have impact on the dominating solutions,
their presence have to be taken into account in the design process. The next step
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of this study is to consider the presence of uncertainties invasively in the optimiza-
tion procedure, generating a probabilistic Pareto front rather than analyzing the
sensitivity of the deterministic Pareto due to uncertainties.
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